
Gurin A. M. 1

Modern C++ approaches to FEM modelling

A.M.Gurin1

1Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia

State of the art R&D demands complex, coupled simulations of the physical phenom-
ena. Modern research goals could require numerical simulation with unstructured meshes,
dynamic topology, nonlinearity, high order elements, different equations in subdomains.
This complex tasks provide considerable challenge for programmers. Old ways of pro-
gramming do not provide adequate solution for this complex tasks anymore. To deal with
the mentioned problems one has to choose an appropriate tool. At present day C++ is
one of the most popular programming languages for scientific computations. It has a wide
variety of libraries for common tasks such as solution of linear systems and formidable
performance rivaled only by Fortran. In last dozen of years C++ underwent quite ex-
tensive modification which made it a performant yet flexible, multiparadigm language for
scientific computation. Programming techniques and features such as lambda functions,
functional programming and template metaprogramming have become available or much
easier to use in C++11/C++14/C++17.

Newest features of C++ were assessed and tested on simple computational problems.
Possible performance impact and optimization features were investigated by studying of
the assembly code generated by C++ compilers gcc, clang, MSVC. Compiler inlining
capabilities were proven on a simple problem of solving an equation using the Newton
method. Modern compilers aggressively optimize the code and are capable of actually
solving the equation already in the compilation process. The compiler will also math-
ematically simplify all parts of the algorithm wherever possible if there is not enough
information given to solve the equation. To illustrate advantages of this technique and to
show that it is applicable to complex real world problems, the elasticity problem has been
solved using the functional approach and with the help of template metaprogramming.

Improved static polymorphism and template metaprogramming capabilities of C++
are powerful tools that let us write flexible generic code with better code reuse. This tools
are applied on compile time so there is no negative impact on the runtime performance.
Quite the contrary, performance is further improved by the additional data that the
compiler can use to optimize the program. Code that has been written in this manner is
less prone to errors because most of them are discovered during the compilation phase.


